On-line nonparametric estimation
نویسنده
چکیده
A survey of some recent results on nonparametric on-line estimation is presented. The first result deals with an on-line estimation for a smooth signal S(t) in the classic ‘signal plus Gaussian white noise’ model. Then an analogous on-line estimator for the regression estimation problem with equidistant design is described and justified. Finally some preliminary results related to the on-line estimation for the diffusion observed process are described. MSC: 62G05, 62G08, 62M05.
منابع مشابه
A MODIFICATION ON RIDGE ESTIMATION FOR FUZZY NONPARAMETRIC REGRESSION
This paper deals with ridge estimation of fuzzy nonparametric regression models using triangular fuzzy numbers. This estimation method is obtained by implementing ridge regression learning algorithm in the La- grangian dual space. The distance measure for fuzzy numbers that suggested by Diamond is used and the local linear smoothing technique with the cross- validation procedure for selecting t...
متن کاملNonparametric Regression Estimation under Kernel Polynomial Model for Unstructured Data
The nonparametric estimation(NE) of kernel polynomial regression (KPR) model is a powerful tool to visually depict the effect of covariates on response variable, when there exist unstructured and heterogeneous data. In this paper we introduce KPR model that is the mixture of nonparametric regression models with bootstrap algorithm, which is considered in a heterogeneous and unstructured framewo...
متن کاملNonparametric Estimation of Spatial Risk for a Mean Nonstationary Random Field}
The common methods for spatial risk estimation are investigated for a stationary random field. Because of simplifying, lets distribution is known, and parametric variogram for the random field are considered. In this paper, we study a nonparametric spatial method for spatial risk. In this method, we model the random field trend by a local linear estimator, and through bias-corrected residuals, ...
متن کاملStatistical Topology Using the Nonparametric Density Estimation and Bootstrap Algorithm
This paper presents approximate confidence intervals for each function of parameters in a Banach space based on a bootstrap algorithm. We apply kernel density approach to estimate the persistence landscape. In addition, we evaluate the quality distribution function estimator of random variables using integrated mean square error (IMSE). The results of simulation studies show a significant impro...
متن کاملNonparametric Estimation and On-Line Prediction for General Stationary Ergodic Sources
We propose a learning algorithm for nonparametric estimation and on-line prediction for general stationary ergodic sources. The idea is to prapare many histograms and estimate the probability distribution of the bins in each histogarm. We do not know a priori which histogram expresses the true distribution: if the histogram is too sharp, the estimation captures the noise too much (overestimatio...
متن کامل